In a region dubbed the habitable zone, the number of habitable planets grows to an unwieldy length... figuratively. Scientists have gone from having no extrasolar planets to having too many, but according to a team of Arizona State University researchers, we can cross one off the list: Tau Ceti.

The Tau Ceti system, popularized in several fictional works, including Star Trek, has long been used in science fiction, and even popular news, as a very likely place to have life due to its proximity to Earth and the star's sun-like characteristics. Since December 2012, Tau Ceti has become even more appealing, thanks to evidence of possibly five planets orbiting it, with two of these - Tau Ceti e and f - potentially residing in the habitable zone.

Using the chemical composition of Tau Ceti, the ASU team modeled the star's evolution and calculated its habitable zone. Although their data confirms that two planets (e and f) may be in the habitable zone, it doesn't mean life flourishes or even exists there.

"Planet e is in the habitable zone only if we make very generous assumptions. Planet f initially looks more promising, but modeling the evolution of the star makes it seem probable that it has only moved into the habitable zone recently as Tau Ceti has gotten more luminous over the course of its life," said lead author and astrophysicist Michael Pagano, according to a press release.

Based upon the team's models, planet f has likely been in the habitable zone much less than one billion years. This sounds like a long time, but it took Earth's biosphere about two billion years to produce potentially detectable changes in its atmosphere. A planet that entered the habitable zone only a few hundred million years ago may well be habitable and even inhabited, but not have detectable biosignatures.

According to Pagano, he and his collaborators didn't pick Tau Ceti "hoping, wanting, or thinking" it would be a good candidate to look for life, but for the idea that these might be truly alien new worlds.

Tau Ceti has a highly unusual composition with respect to its ratio of magnesium and silicon, which are two of the most important rock forming minerals on Earth. The ratio of magnesium to silicon in Tau Ceti is 1.78, which is about 70 percent more than our sun.

"With such a high magnesium and silicon ratio it is possible that the mineralogical make-up of planets around Tau Ceti could be significantly different from that of Earth," said mineral physicist Sang-Heon (Dan) Shim. "Tau Ceti's planets could very well be dominated by the mineral olivine at shallow parts of the mantle and have lower mantles dominated by ferropericlase."

Considering that ferropericlase is much less viscous, or resistant to flowing, hot, yet solid, mantle rock would flow more easily, possibly having profound effects on volcanism and tectonics at the planetary surface, processes which have a significant impact on the habitability of Earth.

"This is a reminder that geological processes are fundamental in understanding the habitability of planets," Shim added.

According to Pagano: "Tau Ceti has been a popular destination for science fiction writers and everyone's imagination as somewhere there could possibly be life, but even though life around Tau Ceti may be unlikely, it should not be seen as a letdown, but should invigorate our minds to consider what exotic planets likely orbit the star, and the new and unusual planets that may exist in this vast universe."

Reference:
"The Chemical Composition of Tau Ceti and Possible Effects on Terrestrial Planets," Michael Pagano et al., Astrophysical Journal, Vol. 803, No. 2, Art. 90 [
https://dx.doi.org/10.1088/0004-637X/803/2/90, preprint: https://arxiv.org/abs/1503.04189].

This work was supported by funding from the NASA Astrobiology Institute and NASA Nexus for Exoplanet System Science.

For more information on NASA's NExSS, check out HNGN's recent article on the program.