According to Samir Mathur, a professor of physics at The Ohio State University, the recently proposed idea that black holes have "firewalls" that destroy all they touch has a loophole.

In fact, he says the world could be captured by a black hole, and we wouldn't even notice.

More than a decade ago, Mathur used the principles of string theory to show that black holes are actually tangled-up balls of cosmic strings. His "fuzzball theory" helped resolve certain contradictions in how physicists think of black holes.

But when a group of researchers recently tried to build on Mathur's theory, they concluded that the surface of the fuzzball was actually a firewall.

According to the firewall theory, the surface of the fuzzball is deadly. In fact, the idea is called the firewall theory because it suggests that a very literal fiery death awaits anything that touches it.

Mathur and his team have been expanding on their fuzzball theory, too, and they've come to a completely different conclusion. They see black holes not as killers, but rather as benign copy machines of a sort. They believe that when material touches the surface of a black hole, it becomes a hologram, a near-perfect copy of itself that continues to exist just as before.

It's not that the firewall proponents made some kind of math error, Mathur said, according to a press release. The two sides based their calculations on different assumptions, so they got different answers. One group rejects the idea of imperfection in this particular case, and the other does not.

Imperfection is common topic in cosmology. Physicist Stephen Hawking has famously said that the universe was imperfect from the very first moments of its existence. Without an imperfect scattering of the material created in the Big Bang, gravity would not have been able to draw together the atoms that make up galaxies, stars, the planets -- and us.

This new dispute about firewalls and fuzzballs hinges on whether physicists can accept that black holes are imperfect, just like the rest of the universe.

"There's no such thing as a perfect black hole, because every black hole is different," Mathur explained.

His comment refers to the resolution of the "information paradox," a long-running physics debate in which Hawking eventually conceded that the material that falls into a black hole isn't destroyed, but rather becomes part of the black hole.

The black hole is permanently changed by the new addition. It's as if, metaphorically speaking, a new gene sequence has been spliced into its DNA. That means every black hole is a unique product of the material that happens to come across it.

The implications of the fuzzball-firewall issue are profound. One of the tenets of string theory is that our three-dimensional existence -- four-dimensional if you count time -- might actually be a hologram on a surface that exists in many more dimensions.

"If the surface of a black hole is a firewall, then the idea of the universe as a hologram has to be wrong," Mathur said.

The very nature of the universe is at stake, but don't expect rival physicists to come to blows about it.

"It's not that kind of disagreement," Mathur said while laughing. "It's a simple question, really. Do you accept the idea of imperfection, or do you not?"

Reference:
"A Model With No Firewall," Samir D. Mathur